Respuesta :
Answer:
The dimensions of the box of maximum volume are: Length: 6.325 centimeters, height: 3.162 centimeters.
Step-by-step explanation:
The volume ([tex]V[/tex]), measured in cubic centimeters, and the surface area of the rectangular box ([tex]A_{s}[/tex]), measured in square centimeters, with a square base are represented by the following formulas:
[tex]V = l^{2}\cdot h[/tex] (1)
[tex]A_{s} = 4\cdot l\cdot h +l^{2}[/tex] (2)
Where:
[tex]l[/tex] - Length of the side of the square base, measured in centimeters.
[tex]h[/tex] - Height of the box, measured in centimeters.
By (2) we clear the height:
[tex]4\cdot l\cdot h = A_{s} -l^{2}[/tex]
[tex]h = \frac{A_{s}-l^{2}}{4\cdot l}[/tex]
And expand (1) by this result:
[tex]V = l^{2}\cdot \left(\frac{A_{s}-l^{2}}{4\cdot l } \right)[/tex]
[tex]V = \frac{A_{s}\cdot l -l^{3}}{4}[/tex]
Lastly, we proceed to perform First and Second Derivative Test to find critical values associated with maximum volume:
First Derivative Test
[tex]\frac{A_{s}-3\cdot l^{2}}{4} = 0[/tex]
[tex]A_{s} = 3\cdot l^{2}[/tex]
[tex]l =\sqrt{\frac{A_{s}}{3} }[/tex] (1)
Second Derivative Test
[tex]V''=-\frac{6\cdot l}{4}[/tex]
[tex]V'' = -\frac{3\cdot l}{2}[/tex]
[tex]V'' = -\frac{3}{2}\cdot \sqrt{\frac{A_{s}}{3} }[/tex] (2)
We conclude that critical value leads to a maximum volume.
If we know that [tex]A_{s} = 120\,cm^{2}[/tex], then dimensions of the box are, respectively:
[tex]l = \sqrt{\frac{120\,cm^{2}}{3} }[/tex]
[tex]l \approx 6.325\,cm[/tex]
[tex]h = \frac{120\,cm^{2}-(6.325\,cm)^{2}}{4\cdot (6.325\,cm)}[/tex]
[tex]h \approx 3.162\,cm[/tex]
The dimensions of the box of maximum volume are: Length: 6.325 centimeters, height: 3.162 centimeters.