A rectangular box with a square base and no top is to be made of a total of 120 cm2 of cardboard. Find the dimensions of the box of maximum volume.

Respuesta :

Answer:

The dimensions of the box of maximum volume are: Length: 6.325 centimeters, height: 3.162 centimeters.

Step-by-step explanation:

The volume ([tex]V[/tex]), measured in cubic centimeters, and the surface area of the rectangular box ([tex]A_{s}[/tex]), measured in square centimeters, with a square base are represented by the following formulas:

[tex]V = l^{2}\cdot h[/tex] (1)

[tex]A_{s} = 4\cdot l\cdot h +l^{2}[/tex] (2)

Where:

[tex]l[/tex] - Length of the side of the square base, measured in centimeters.

[tex]h[/tex] - Height of the box, measured in centimeters.

By (2) we clear the height:

[tex]4\cdot l\cdot h = A_{s} -l^{2}[/tex]

[tex]h = \frac{A_{s}-l^{2}}{4\cdot l}[/tex]

And expand (1) by this result:

[tex]V = l^{2}\cdot \left(\frac{A_{s}-l^{2}}{4\cdot l } \right)[/tex]

[tex]V = \frac{A_{s}\cdot l -l^{3}}{4}[/tex]

Lastly, we proceed to perform First and Second Derivative Test to find critical values associated with maximum volume:

First Derivative Test

[tex]\frac{A_{s}-3\cdot l^{2}}{4} = 0[/tex]

[tex]A_{s} = 3\cdot l^{2}[/tex]

[tex]l =\sqrt{\frac{A_{s}}{3} }[/tex] (1)

Second Derivative Test

[tex]V''=-\frac{6\cdot l}{4}[/tex]

[tex]V'' = -\frac{3\cdot l}{2}[/tex]

[tex]V'' = -\frac{3}{2}\cdot \sqrt{\frac{A_{s}}{3} }[/tex] (2)

We conclude that critical value leads to a maximum volume.

If we know that [tex]A_{s} = 120\,cm^{2}[/tex], then dimensions of the box are, respectively:

[tex]l = \sqrt{\frac{120\,cm^{2}}{3} }[/tex]

[tex]l \approx 6.325\,cm[/tex]

[tex]h = \frac{120\,cm^{2}-(6.325\,cm)^{2}}{4\cdot (6.325\,cm)}[/tex]

[tex]h \approx 3.162\,cm[/tex]

The dimensions of the box of maximum volume are: Length: 6.325 centimeters, height: 3.162 centimeters.

ACCESS MORE
EDU ACCESS