Answer:
Resistance of A is [tex]6\ \Omega[/tex] and B is [tex]3\ \Omega[/tex]
Explanation:
The voltage across both the resistances will be the same as they are connected in parallel.
V = Voltage = 6 V
[tex]I_B=2\ \text{A}[/tex]
Resistance is given by
[tex]R_B=\dfrac{V}{I_B}\\\Rightarrow R_B=\dfrac{6}{2}\\\Rightarrow R_B=3\ \Omega[/tex]
[tex]V_B=V_b-V_A\\\Rightarrow V_B=6-4\\\Rightarrow V_B=2\ \text{V}[/tex]
Series connection
[tex]V_A=4\ \text{V}[/tex]
The current is constant in series connection
[tex]I=\dfrac{V_B}{R_B}\\\Rightarrow I=\dfrac{2}{3}\ \text{A}[/tex]
[tex]R_A=\dfrac{V_A}{I}\\\Rightarrow R_A=\dfrac{4}{\dfrac{2}{3}}\\\Rightarrow R_A=6\ \Omega[/tex]
The resistance of A is [tex]6\ \Omega[/tex] and B is [tex]3\ \Omega[/tex].