Answer:
[tex]\mathbf{ P(t) = 3500 (1.}00206)^{12t}[/tex]
Step-by-step explanation:
The missing value of the given function is:
[tex]P(t) = 3500 (1.025)^t[/tex]
where
t = no. of years since study began
∴
[tex]P(t) = 3500 (1+0.025)^t[/tex]
Per year, the function can be written as:
[tex]P(t) = 3500 (1+\dfrac{25}{1000})^t[/tex]
For monthly growth rate m = 12
[tex]P(t) = 3500 (1+\dfrac{25}{1000(m)})^{mt}[/tex]
[tex]P(t) = 3500 (1+\dfrac{25}{1000(12)})^{12t}[/tex]
[tex]P(t) = 3500 (1+\dfrac{25}{12000})^{12t}[/tex]
[tex]P(t) = 3500 (1+0.00206)^{12t}[/tex]
[tex]\mathbf{ P(t) = 3500 (1.}00206)^{12t}[/tex]