The ratio of a to b is 6 to 1. and the ratio of b to c is 12 to 1. What is the value of 2a + 3b / 4b + 3c

A. 3/8
B. 5/17
C. 16/17.
D. 60/17
E. 48/7

Respuesta :

Answer:

answer will be 5/17 as I have just substitute the number

The ratio of [tex]a[/tex] to [tex]b[/tex] is [tex]6[/tex] to[tex]1[/tex] and the ratio of [tex]b[/tex] to [tex]c[/tex] is [tex]12[/tex] to [tex]1[/tex], then the value of [tex]\frac{2a + 3b}{4b + 3c}[/tex]  is  [tex]\frac{180}{51}.[/tex]

What is ratio?

Ratio is used to compare to things i.e. numbers, size etc.

We have,

[tex]\frac{a}{b} = \frac{6}{1}[/tex]  and  [tex]\frac{b}{c} = \frac{12}{1}[/tex]

From the above given data we have to make value [tex]b[/tex] same in both ratios;

Therefore multiply [tex](\frac{a}{b})[/tex] ratios from [tex]12[/tex],

We get,

[tex]\frac{a}{b} = \frac{72}{12}[/tex]   and   [tex]\frac{b}{c} = \frac{12}{1}[/tex]

So,

[tex]a=72,\\b=12,\\c=1[/tex]

Now, putting above values in [tex]\frac{2a + 3b}{4b + 3c}[/tex],

[tex]=\frac{2(72) + 3(12)}{4(12)+ 3(1)}[/tex]

[tex]=\frac{180}{51}[/tex]

Hence we can say that The ratio of [tex]a[/tex] to [tex]b[/tex] is [tex]6[/tex] to [tex]1[/tex] and the ratio of [tex]b[/tex] to [tex]c[/tex] is [tex]12[/tex] to [tex]1[/tex], then the value of [tex]\frac{2a + 3b}{4b + 3c}[/tex]  is  [tex]\frac{180}{51}.[/tex]

To know more about ratios click here

https://brainly.com/question/13419413

#SPJ2

ACCESS MORE