Solution :
From the given data,
For the spherical shell is [tex]$\frac{k^2}{R^2}= \frac{2}{3}$[/tex]
where x is the radius of gyration and the acceleration of a rolling body on an inclined plane = a
Therefore,
[tex]$a =\frac{g \sin \theta}{1+ \frac{k^2}{R^2}} $[/tex]
[tex]$= \frac{g \sin \theta}{1 +\frac{2}{3}}$[/tex]
[tex]$= \frac{3}{5} g \sin \theta$[/tex]
= 0.6 x 9.81 x sin ( 29.7)
[tex]$= 2.913 \ m/s^2$[/tex]
[tex]$h = \frac{1}{2} a(\Delta t)^2$[/tex]
[tex]$\Delta t = \sqrt{\frac{2h}{a}}$[/tex]
[tex]$\Delta t = \sqrt{\frac{2 \times 2.9}{2.913}}$[/tex]
Δt = 1.411 s