Respuesta :
Solution:
[tex]$V_i = 100 \ mV, i_i = 100 \ \mu A, v_0 = 10 \ V, R_L = 100 \ \Omega$[/tex]
[tex]$i_L= \frac{v_0}{R_L} =\frac{10}{100}$[/tex]
= 10 mA
[tex]$A_V = \frac{v_0}{v_i} = \frac{10}{100 \times 10^{-3}}$[/tex]
= 100
[tex]$A_V(dB) = 20 \log (100)$[/tex]
= 40 dB
[tex]$A_i = \frac{i_L}{i_i} = \frac{100 \times 10^{-3}}{100 \times 10^{-6}}$[/tex]
= 1000
[tex]$A_i(dB) = 20 \log (1000)$[/tex]
= 60 dB
[tex]$A_p = \frac{p_0}{p_i} = \frac{v_0 i_L}{v_i i_i}= \frac{10(100 \times 10^{-3})}{100 \times 10^{-3} \times 100 \times 10^{-6}}$[/tex]
= 100000
[tex]$A_p(dB) = 10 \log (100000)$[/tex]
= 50 dB
b). [tex]$V_i = 100\ \mu V, i_i = 100 \ n A, v_0 = 1 \ V, R_L = 10 \ K \Omega$[/tex]
[tex]$i_0 = \frac{v_0}{R_L}=\frac{1}{10 K} = 100 \ \mu A$[/tex]
[tex]$A_v= \frac{v_0}{v_i} =\frac{1}{10 \times 10^{-6}} = 100000$[/tex]
[tex]$A_v(dB) = 20 \log (100000) = 100 \ dB $[/tex]
[tex]$A_i= \frac{i_0}{i_i} =\frac{100 \times 10^{-6}}{100 \times 10^{-9}} = 1000$[/tex]
[tex]$A_i(dB) = 20 \log (1000) = 60 \ dB $[/tex]
[tex]$A_p = \frac{p_0}{p_i} = \frac{v_0 i_0}{v_i i_i}= \frac{1 \times 1000 \times 10^{-6}}{100 \times 10^{-9} \times 10 \times 10^{-6}} $[/tex]
= 100000000
[tex]$A_p(dB) = 10 \log (100000000)$[/tex]
= 80 dB
c). [tex]$V_i = 1 V, i_i = 1 \ m A, v_0 = 5 \ V, R_L = 10 \ \Omega$[/tex]
[tex]$i_0 = \frac{v_0}{R_L}=\frac{5}{10 } = 0.5 \ A$[/tex]
[tex]$A_v= \frac{v_0}{v_i} =\frac{5}{1} = 5$[/tex]
[tex]$A_v(dB) = 20 \log (5) = 14 \ dB $[/tex]
[tex]$A_i= \frac{i_0}{i_i} =\frac{0.5}{1 \times 10^{-3}} = 500$[/tex]
[tex]$A_i(dB) = 20 \log (500) = 54 \ dB $[/tex]
[tex]$A_p = \frac{p_0}{p_i} = \frac{v_0 i_0}{v_i i_i}= \frac{5 \times 0.5}{1 \times 1 \times 10^{-3} } $[/tex]
= 2500
[tex]$A_p(dB) = 10 \log (2500)$[/tex]
= 34 dB