Respuesta :
Answer:
Total ____ mean ____ total probability
84 _____ 48 ______ 1/16
90 _____ 45 ______ 1/8
94 _____ 47 ______ 1/8
96 _____48 ______ 1/16
100 ____ 50 ______ 1/4
104 ____ 52 _____ 1/ 16
106 ____ 53 ______ 1/8
110 ____55 _______ 1/8
116 ____ 58 ______ 1/16
Step-by-step explanation:
Given the weights :
42 ; 48 ; 52 ; 58
Sample size, n = 2
Number of weights = 4 ; size of sample space = 4^n = 4^2 = 16
Since the weights are distinct :
Probability of each (two Selections = 1/4 * 1/4) = 1/16
Possible selections :
(42,42),(42,48),(48,42),(42,52),(52,42),(42,58),(58,42),(48,48),(48,52),(52,48),(48,58),(58,48),(52,52),(52,58),(58,52),(58,58)
All have probabilities of 1/16
Sample total ___ sample. Mean ___ probability
84___ 42 ___ 1/16
90 ____45 _ 1/16
90 ___ 45 __1/16
94 __47 ___ 1/16
94 __ 47 __ 1/16
100 __ 50 __ 1/16
100 __ 50 __ 1/16
96 __ 48 __ 1/16
100 __ 50__1/16
100 __ 50 __ 1/16
106 __ 53 __ 1/16
106 __ 53 __ 1/16
104 __ 52 ___ 1/16
110 __ 55 ___ 1/16
110 __55 ____ 1/16
116 __ 58 ___ 1/16
Sampling distribution of total weight :
Total ____ mean ____ total probability
84 _____ 48 ______ 1/16
90 _____ 45 ______ 1/8
94 _____ 47 ______ 1/8
96 _____48 ______ 1/16
100 ____ 50 ______ 1/4
104 ____ 52 _____ 1/ 16
106 ____ 53 ______ 1/8
110 ____55 _______ 1/8
116 ____ 58 ______ 1/16
Using probability concepts, it is found that the distribution of total weights is given by:
[tex]P(X = 84) = \frac{1}{16}[/tex]
[tex]P(X = 90) = \frac{1}{8}[/tex]
[tex]P(X = 94) = \frac{1}{8}[/tex]
[tex]P(X = 96) = \frac{1}{16}[/tex]
[tex]P(X = 100) = \frac{1}{4}[/tex]
[tex]P(X = 104) = \frac{1}{16}[/tex]
[tex]P(X = 106) = \frac{1}{8}[/tex]
[tex]P(X = 110) = \frac{1}{8}[/tex]
[tex]P(X = 116) = \frac{1}{16}[/tex]
- A probability is the number of desired outcomes divided by the number of total outcomes.
Considering that all weights are equally as likely, we can put it all into a "table", with [tex]4^2 = 16[/tex] total options.
Dog 1 - Dog 2 - Total
42 - 42 - 84
42 - 48 - 90
42 - 52 - 94
42 - 58 - 100
48 - 42 - 90
48 - 48 - 96
48 - 52 - 100
48 - 58 - 106
52 - 42 - 94
52 - 48 - 100
52 - 52 - 104
52 - 58 - 110
58 - 42 - 100
58 - 48 - 106
58 - 52 - 110
58 - 58 - 116
Thus, the possible outcomes are:
- 1 for 84, 96, 104, 116.
- 2 for 90, 94, 106, 110.
- 4 for 100.
Thus, the distribution is:
[tex]P(X = 84) = \frac{1}{16}[/tex]
[tex]P(X = 90) = \frac{1}{8}[/tex]
[tex]P(X = 94) = \frac{1}{8}[/tex]
[tex]P(X = 96) = \frac{1}{16}[/tex]
[tex]P(X = 100) = \frac{1}{4}[/tex]
[tex]P(X = 104) = \frac{1}{16}[/tex]
[tex]P(X = 106) = \frac{1}{8}[/tex]
[tex]P(X = 110) = \frac{1}{8}[/tex]
[tex]P(X = 116) = \frac{1}{16}[/tex]
A similar problem is given at https://brainly.com/question/16967884