Answer:
The required frequency = 0.442 Hz
Explanation:
Frequency [tex]f = ( \dfrac{1}{2 \pi}) \omega[/tex]
where;
[tex]\omega = \sqrt{\dfrac{k}{m} }[/tex]
Then;
[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{k}{m} } \Bigg )[/tex]
However;
[tex]k = \dfrac{F}{x}[/tex] and;
mass [tex]m = m_{car } + m_{person}[/tex]
[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{\dfrac{F}{x}}{m_{car}+m_{person}} } \Bigg )[/tex]
[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{{F}}{x(m_{car}+m_{person})} } \Bigg )[/tex]
where;
[tex]F = m_{person}g[/tex]
Then;
[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{ {m_{person}g }}{x(m_{car}+m_{person})} } \Bigg )[/tex]
replacing the values;
[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{ {(88 \ kg)* (9.81 \ m/s^2) }}{(5.36 \times 10^{-2} \ m) (2002 \ kg +88 \ kg)} } \Bigg )[/tex]
[tex]\mathbf{f = 0.442 \ Hz}[/tex]