An 88 kg person steps into a car of mass 2002 kg, causing it to sink 5.36 cm on itssprings. Assuming no damping, with what fre-quency will the car and passenger vibrate onthe springs? Answer in units of Hz. The acceleration of gravity is 9.81 m/s^2.

Respuesta :

Answer:

The required frequency = 0.442 Hz

Explanation:

Frequency [tex]f = ( \dfrac{1}{2 \pi}) \omega[/tex]

where;

[tex]\omega = \sqrt{\dfrac{k}{m} }[/tex]

Then;

[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{k}{m} } \Bigg )[/tex]

However;

[tex]k = \dfrac{F}{x}[/tex] and;

mass [tex]m = m_{car } + m_{person}[/tex]

[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{\dfrac{F}{x}}{m_{car}+m_{person}} } \Bigg )[/tex]

[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{{F}}{x(m_{car}+m_{person})} } \Bigg )[/tex]

where;

[tex]F = m_{person}g[/tex]

Then;

[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{ {m_{person}g }}{x(m_{car}+m_{person})} } \Bigg )[/tex]

replacing the values;

[tex]f = \Bigg ( \dfrac{1}{2 \pi} \Bigg ) \Bigg( \sqrt{\dfrac{ {(88 \ kg)* (9.81 \ m/s^2) }}{(5.36 \times 10^{-2} \ m) (2002 \ kg +88 \ kg)} } \Bigg )[/tex]

[tex]\mathbf{f = 0.442 \ Hz}[/tex]

RELAXING NOICE
Relax