Answer:
[tex]\Delta s=-23.0\frac{J}{mol*K}[/tex]
Explanation:
Hello!
In this case, since the entropy change when an ideal gas undergo both a volume and temperature change is computed by:
[tex]\Delta s =Cp*ln(\frac{T_2}{T_1} )-R*ln(\frac{P_2}{P_1} )[/tex]
Whereas the molar Cp is 20.786 J/(mol*K) and the final pressure is computed via the Boyle's law:
[tex]P_2=\frac{1.00atm*500cm^3}{50cm^3}=10 atm[/tex]
Thus, we plug in the data (temperatures in Kelvin) to obtain:
[tex]\Delta s =20.786\frac{J}{mol*K} *ln[\frac{(-25+273)K}{(25+273)K} ]-8.3145\frac{J}{mol*K}*ln(\frac{10atm}{1atm} )\\\\\Delta s=-23.0\frac{J}{mol*K}[/tex]
Best regards!