Answer:
[tex]8\:\mathrm{minutes}[/tex]
Step-by-step explanation:
The volume of a cylinder is given as:
[tex]r^2\cdot\pi\cdot h[/tex]
Since the diameter is [tex]2.2[/tex], the radius is [tex]\frac{2.2}{2}=1.1[/tex].
Therefore, the volume of this cylinder is:
[tex]1.1^2\cdot 3.14\cdot 4=15.1976\:\mathrm{ft^3}[/tex], using [tex]\pi=3.14[/tex] as requested in the problem.
Since the tank is emptied at a constant rate of [tex]1.5\:\mathrm{ft^3\:per\:minute}[/tex], it will take
[tex]\frac{15.1976}{1.5}=7.5988=\fbox{$8\:\mathrm{minutes}$}[/tex] to empty the tank.