Answer:
The domain of the function f(x) is:
[tex]\mathrm{Domain\:of\:}\:5\left|x\right|\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]
The range of the function f(x) is:
[tex]\mathrm{Range\:of\:}5\left|x\right|:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\ge \:0\:\\ \:\mathrm{Interval\:Notation:}&\:[0,\:\infty \:)\end{bmatrix}[/tex]
Step-by-step explanation:
Given the function
[tex]f\left(x\right)=5\left|x\right|[/tex]
Determining the domain:
We know that the domain of the function is the set of input or arguments for which the function is real and defined.
In other words,
It is clear that the function has undefined points nor domain constraints.
Thus, the domain of the function f(x) is:
[tex]\mathrm{Domain\:of\:}\:5\left|x\right|\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]
Determining the range:
We also know that range is the set of values of the dependent variable for which a function is defined.
In other words,
We know that the range of an Absolute function is of the form
[tex]c|ax+b|+k\:\mathrm{is}\:\:f\left(x\right)\ge \:k[/tex]
[tex]k=0[/tex]
so
Thus, the range of the function f(x) is:
[tex]\mathrm{Range\:of\:}5\left|x\right|:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\ge \:0\:\\ \:\mathrm{Interval\:Notation:}&\:[0,\:\infty \:)\end{bmatrix}[/tex]