solve the question below, please..

Answer:
C = 133.33°
Step-by-step explanation:
Apply the Law of Cosines to find angle C:
[tex] Cos(C) = \frac{a^2 + b^2 - c^2}{2ab} [/tex]
Where,
a = 8.5 cm
b = 4.1 cm
c = 11.7 cm
Plug in the values
[tex] Cos(C) = \frac{8.5^2 + 4.1^2 - 11.7^2}{2*8.5*4.1} [/tex]
[tex] Cos(C) = \frac{-47.83}{69.7} [/tex]
[tex] Cos(C) = -0.6862 [/tex]
[tex] C = Cos^{-1}(-0.6862) [/tex]
C = 133.33°