solve the question below, please.

Answer:
Adam: 52.26°
Step-by-step explanation:
Use Cosine Rule, [tex] Cos(C) = \frac{a^2 + b^2 - c^2}{2ab} [/tex], to find the angle of both players.
✔️Angle of Carlos:
Let the angle be C,
a = 50 ft
b = 40 ft
c = 24 ft
Plug in the values into the equation
[tex] Cos(C) = \frac{50^2 + 40^2 - 24^2}{2*50*40} [/tex]
[tex] Cos(C) = \frac{3,524}{4,000} [/tex]
[tex] C = Cos^{-1}(\frac{3,524}{4,000}) [/tex]
C = 28.24° (nearest hundredth)
✔️Angle of Adam:
Let the angle be C,
a = 30 ft
b = 22 ft
c = 24 ft
Plug in the values into the equation
[tex] Cos(C) = \frac{30^2 + 22^2 - 24^2}{2*30*22} [/tex]
[tex] Cos(C) = \frac{808}{1,320} [/tex]
[tex] C = Cos^{-1}(\frac{808}{1,320)} [/tex]
C = 52.26° (nearest hundredth)