Answer:
1.732 seconds
[tex]s=ut+\dfrac{1}{2}at^2[/tex]
Explanation:
s = Displacement of ball = 15 m
g = a = Acceleration due to gravity = [tex]10\ \text{m/s}^2[/tex]
u = Initial velocity of the ball = 0
t = Time taken
From the kinematic equations we use the following formula
[tex]s=ut+\dfrac{1}{2}at^2\\\Rightarrow 15=0t+\dfrac{1}{2}\times 10t^2\\\Rightarrow t=\sqrt{\dfrac{15\times 2}{10}}\\\Rightarrow t=\sqrt{3}=1.732\ \text{s}[/tex]
The object will reach the ground after 1.732 seconds.
The formula used is [tex]s=ut+\dfrac{1}{2}at^2[/tex].