Respuesta :

You just distribute the power of 3 so it should end up as
(8x^3)/(27y^6)

(the 3 and the 2 multiply to equal 6)

Hope it helps!

Answer:  [tex]\frac{8x^3}{27y^6}[/tex]

This is the fraction 8x^3 all over 27y^6

On a keyboard, we can write it as (8x^3)/(27y^6)

===========================================================

Explanation:

The exponent tells you how many copies of the base to multiply with itself.

We'll have three copies of [tex]\left(\frac{2x}{3y^2}\right)[/tex] multiplied with itself due to the cube exponent on the outside.

So,

[tex]\left(\frac{2x}{3y^2}\right)^3 = \left(\frac{2x}{3y^2}\right)*\left(\frac{2x}{3y^2}\right)*\left(\frac{2x}{3y^2}\right)\\\\\left(\frac{2x}{3y^2}\right)^3 = \frac{2x*2x*2x}{(3y^2)*(3y^2)*(3y^2)}\\\\\left(\frac{2x}{3y^2}\right)^3 = \frac{(2*2*2)*(x*x*x)}{(3*3*3)*(y^2*y^2*y^2)}\\\\\left(\frac{2x}{3y^2}\right)^3 = \frac{8x^3}{9y^6}\\\\[/tex]

-------------------

Or another approach you could take is to cube each component of the fraction. The rule I'm referring to is [tex]\left(\frac{a}{b}\right)^c = \frac{a^c}{b^c}[/tex]

Applying that rule will lead to:

[tex]\left(\frac{2x}{3y^2}\right)^3 = \frac{(2x)^3}{(3y^2)^3}\\\\\left(\frac{2x}{3y^2}\right)^3 = \frac{2^3*x^3}{3^3*(y^2)^3}\\\\\left(\frac{2x}{3y^2}\right)^3 = \frac{8x^3}{27y^{2*3}}\\\\\left(\frac{2x}{3y^2}\right)^3 = \frac{8x^3}{27y^6}\\\\[/tex]

Either way you should get 8x^3 all over 27y^6 as one fraction.