Answer:
Equation: [tex]2(x+8)+2(3x-5)+23 = 126[/tex]
[tex]x = 12.125[/tex]m
[tex]AB = 20.125[/tex]m
[tex]EF=31.375[/tex]m
Step-by-step explanation:
The equation of the perimeter of this shape can be written as:[tex]2(x+8)+2(3x-5)+23 = 126[/tex] (Sides with the same number of dashes are equal in length)
Which becomes:
[tex]2x+16+6x-10+23=126[/tex]
[tex]8x+29=126[/tex]
[tex]8x=97[/tex]
[tex]x= 12.125[/tex]
Since AB = [tex]x+8[/tex], we can substitute to get the length of AB:
[tex]x+8 = 12.125+8[/tex]
[tex]=20.125[/tex]
We can also use substitution to solve for the length of EF:
[tex]3x-5=3(12.125)-5[/tex]
[tex]=31.375[/tex]
Hope this helps :)