Respuesta :

Answer:

The solution of the system of equations be:

[tex]x=8,\:y=4[/tex]

Hence, option C is true.

Step-by-step explanation:

Given the system of equations

[tex]\begin{bmatrix}4x+7y=60\\ -4x+7y=-4\end{bmatrix}[/tex]

adding both the equations

[tex]-4x+7y=-4[/tex]

[tex]+[/tex]

[tex]\underline{4x+7y=60}[/tex]

[tex]14y=56[/tex]

so the system of equations becomes

[tex]\begin{bmatrix}4x+7y=60\\ 14y=56\end{bmatrix}[/tex]

solve 14y for y

[tex]14y=56[/tex]

Divide both sides by 14

[tex]\frac{14y}{14}=\frac{56}{14}[/tex]

Simplify

[tex]y=4[/tex]

[tex]\mathrm{For\:}4x+7y=60\mathrm{\:plug\:in\:}y=4[/tex]

[tex]4x+7\cdot \:4=60[/tex]

[tex]4x+28=60[/tex]

Subtract 28 from both sides

[tex]4x+28-28=60-28[/tex]

Simplify

[tex]4x=32[/tex]

Divide both sides by 4

[tex]\frac{4x}{4}=\frac{32}{4}[/tex]

[tex]x=8[/tex]

Therefore, the solution of the system of equations be:

[tex]x=8,\:y=4[/tex]

Hence, option C is true.