Answer:
0.62
Explanation:
we know that [tex]g=\frac{G M}{R^{2}}[/tex]
[tex]\frac{g_{g}}{g_{J}}=\frac{M_{g}}{M_{J}} \times \frac{R_{j}^{2}}{R_{z}^{2}}=\frac{M}{318 M} \times \frac{(11.2)^{2} R_{g}^{2}}{R_{g}^{2}}[/tex]
[tex]\frac{g_{g}}{g_{j}}=\frac{125.44}{318}=0.394[/tex]
We know that [tex]=\sqrt{\frac{2 h}{g}}[/tex]
here given that each object falls the same distance
[tex]\therefore t \alpha \sqrt{\frac{1}{g}}[/tex]
[tex]\therefore \frac{t_{J}}{t_{B}}=\sqrt{\frac{g_{g}}{g_{J}}}=\sqrt{\frac{g}{0.394}}[/tex]
[tex]\therefore \frac{t_{j}}{t_{g}}=\sqrt{0.394}=0.62[/tex]