Answer:
The longer length is 35ft
Step-by-step explanation:
Given
[tex]Area = 560[/tex]
[tex]Perimeter = 102[/tex]
Required
Determine the longer length
Represent the length with L and width with W
So, we have:
[tex]L * W = 560[/tex] --- Area
[tex]2*(L+W) = 102[/tex] --- Perimeter
Divide both sides by 2 in:
[tex]2*(L+W) = 102[/tex]
[tex]L + W = 51[/tex]
Make L the subject:
[tex]L = 51 - W[/tex]
Substitute 51 - W for L in [tex]L * W = 560[/tex]
[tex](51 - W) * W = 560[/tex]
[tex]51W - W^2 = 560[/tex]
Reorder the equation
[tex]W^2 - 51W + 560 = 0[/tex]
Expand
[tex]W^2 -35W - 16W + 560 = 0[/tex]
[tex]W(W-35)-16(W-35) = 0[/tex]
[tex](W-16)(W-35) = 0[/tex]
Split:
[tex]W - 16 = 0\ \ \ W - 35 = 0[/tex]
[tex]W = 16\ \ \ W = 35[/tex]
This implies that the longer length is 35ft