2.3.2: Michael Myers predicts that SAT scores predict college graduation rates in a linear fashion. U of M has an average SAT of 1450 and a graduation rate of 90%. GVSU has an average SAT of 1110 and a graduation rate of 69.6%. Write an equation to represent the linear relationship . Be sure your equation is in slope-intercept form

Respuesta :

Answer:

[tex]y = \frac{5000r}{3} -50[/tex]

Step-by-step explanation:

Represent the SAT score with y and the rate with r.

So, we have:

[tex](r_1,y_1) = (90\%,1450)[/tex]

[tex](r_2,y_2) = (69.6\%,1110)[/tex]

Required

Determine the equation in slope intercept form

First, we calculate the slope

[tex]m =\frac{y_2 - y_1}{r_2 - r_1}[/tex]

This gives:

[tex]m =\frac{1110 - 1450}{69.6\% - 90\%}[/tex]

[tex]m =\frac{-340}{-20.4\%}[/tex]

Convert percentage to decimal

[tex]m =\frac{-340}{-0.204}[/tex]

[tex]m =\frac{340}{0.204}[/tex]

Multiply by 1000/1000

[tex]m =\frac{340*1000}{0.204*1000}[/tex]

[tex]m =\frac{340000}{204}[/tex]

[tex]m = \frac{5000}{3}[/tex]

The equation is then calculated as:

[tex]y - y_1 = m(r - r_1)[/tex]

This gives:

[tex]y - 1450 = \frac{5000}{3}(r - 90\%)[/tex]

Open Bracket

[tex]y - 1450 = \frac{5000r}{3} - \frac{5000}{3}*90\%[/tex]

Convert percentage to decimal

[tex]y - 1450 = \frac{5000r}{3} - \frac{5000}{3}*0.90[/tex]

[tex]y - 1450 = \frac{5000r}{3} - 5000*0.30[/tex]

[tex]y - 1450 = \frac{5000r}{3} - 1500[/tex]

Make y the subject

[tex]y = \frac{5000r}{3} - 1500+1450[/tex]

[tex]y = \frac{5000r}{3} -50[/tex]