Respuesta :

Answer:

[tex]L^{-1} (\frac{5s}{s^{2}+ 3 s -4 } )[/tex] =  [tex]4e^{-4t} + e^{t}[/tex]

Step-by-step explanation:

Step(i):-

Given

           [tex]L^{-1} (\frac{5s}{s^{2}+ 3 s -4 } )[/tex]

Factors of    s² + 3s - 4

               =    s² + 4s - s -4

               =   s( s +4 ) -1 (s +4)

               =   (s-1)(s+4)

  [tex]L^{-1} (\frac{5s}{s^{2}+ 3 s -4 } )[/tex]

              =    [tex]L^{-1} (\frac{5s}{s+4)(s-1) } )[/tex]

By using partial fractions

           [tex](\frac{s}{s+4)(s-1) } ) = \frac{A}{s+4} + \frac{B}{s-1}[/tex] ..(i)

                s  = A ( s-1) + B( s+4) ....(ii)

          Put s= 1  in equation (ii) , we get

             1 = B(5)

           [tex]B = \frac{1}{5}[/tex]

         s = -4 in equation (ii) , we get

        -4 = -5A

         [tex]A =\frac{4}{5}[/tex]

Step(ii):-

    now the equation (i) , we get

[tex](\frac{s}{s+4)(s-1) } ) = \frac{4}{5(s+4)} + \frac{1}{5(s-1)}[/tex]

[tex]L^{-1} (\frac{s}{s+4)(s-1) } ) = 5( L^{-1} \frac{4}{5(s+4)} + 5L^{-1} \frac{1}{5(s-1)}[/tex]                      

By using inverse Laplace transform formula

[tex]L^{-1} (\frac{1}{s-a} ) = e^{at}[/tex]

[tex]L^{-1} (\frac{1}{s-1} ) = e^{t}[/tex]

[tex]L^{-1} (\frac{1}{s+4} ) = e^{-4t}[/tex]

[tex]L^{-1} (\frac{s}{s+4)(s-1) } ) = 5( L^{-1} \frac{4}{5(s+4)} + 5L^{-1} \frac{1}{5(s-1)}[/tex]                    

                      = [tex]4e^{-4t} + e^{t}[/tex]