Respuesta :

Given:

The sum of third and seventh terms of an AP is 20.

To find:

The sum of the first nine ​ terms.

Solution:

We have, the sum of third and seventh terms of an AP is 20.

[tex]a_3+a_7=20[/tex]        ...(i)

nth term of an AP is

[tex]a_n=a+(n-1)d[/tex]

where, a is first term and d is common difference.

[tex]a_3=a+(3-1)d[/tex]

[tex]a_3=a+2d[/tex]       ...(ii)

[tex]a_7=a+(7-1)d[/tex]

[tex]a_7=a+6d[/tex]       ...(iii)

Using (i), (ii) and (iii), we get

[tex](a+2d)+(a+6d)=20[/tex]

[tex]2a+8d=20[/tex]         ...(iv)

Now, the sum of first n terms of an AP is

[tex]S_n=\dfrac{n}{2}[2a+(n-1)d][/tex]

Put n=9 to find the sum of first 9 terms of an AP.

[tex]S_n=\dfrac{9}{2}[2a+(9-1)d][/tex]

[tex]S_n=\dfrac{9}{2}[2a+8d][/tex]

[tex]S_n=\dfrac{9}{2}[20][/tex]           [Using (iv)]

[tex]S_n=\dfrac{180}{2}[/tex]

[tex]S_n=90[/tex]

Therefore, the sum of the first 9 terms is 90.