Respuesta :

Consider we need to find the equation of the parabola.

Given:

Parabola with focus (2, 1) and directrix x=-8.

To find:

The equation of the parabola.

Solution:

We have directrix x=-8. so, it is a horizontal parabola.

The equation of a horizontal parabola is

[tex](y-k)^2=4p(x-h)[/tex]           ...(i)

where, (h,k) is center, (h+p,k) is focus and x=h-p is directrix.

On comparing focus, we get

[tex](h+p,k)=(2,1)[/tex]

[tex]h+p=2[/tex]          ...(ii)

[tex]k=1[/tex]

On comparing directrix, we get

[tex]h-p=-8[/tex]         ...(iii)

Adding (ii) and (iii), we get

[tex]2h=2+(-8)[/tex]

[tex]2h=-6[/tex]

Divide both sides by 2.

[tex]h=-3[/tex]

Putting h=-3 in (ii), we get

[tex]-3+p=2[/tex]

[tex]p=2+3[/tex]

[tex]p=5[/tex]

Putting h=-3, k=1 and p=5 in (i), we get

[tex](y-1)^2=4(5)(x-(-3))[/tex]

[tex](y-1)^2=20(x+3)[/tex]

Therefore, the equation of the parabola is [tex](y-1)^2=20(x+3)[/tex].