Respuesta :

Answer:

Step-by-step explanation:

From the question given in the picture,

a). Since, NR bisects a straight angle ∠MNP,

  ∠MNR ≅ ∠PNR

  m∠MNR + m∠PNR = 180°

  2(m∠MNR) = 180°

  m∠MNR = 90°

  Therefore, ∠MNR and ∠PNR are the right angles.

  Since, QN divides ∠MNR in two parts,

  Therefore, ∠QNR will be an acute angle (less than 90°).

  ∠MNR + ∠SNR = ∠MNS

  90° + ∠SNR = ∠MNS

  Therefore, m∠MNS will be more than 90°.

    ∠MNS will be an obtuse angle (greater than 90°).

(b). Since, NR divides ∠MNP and ∠QNS,

    ∠MNR ≅ ∠PNR

     ∠QNR ≅ ∠SNR

     ∠MNQ ≅ ∠PNS

(c). m∠MNR = 90°

     Since, NR bisects ∠QNS,

     ∠QNR ≅ ∠RNS

     m∠QNR = m∠RNS = 30°

     m∠QNR + m∠RNS = 30° + 30°

     m∠QNR + m∠RNS = 60°

     m∠QNS = 60° [Since, m∠QNS = m∠QNR + m∠RNS]

     m∠QNP = m∠QNS + m∠SNP

     m∠QNP = m∠QNS + (m∠PNR - m∠SNR)

     m∠QNP = 60° + (90° - 30°) = 120°