Respuesta :

Answer:

[tex] x = \frac{3}{2} + \frac{ \sqrt{5} }{2} ; \: \: x = \frac{3}{2} - \frac{ \sqrt{5} }{2} [/tex]

Step-by-step explanation:

[tex]1 + \frac{1}{ {x}^{2} } = \frac{3}{x} \\ \\ \frac{ {x}^{2} + 1 }{ {x}^{2} } = \frac{3}{x} \\ \\ {x}^{2} + 1 = \frac{3 {x}^{2} }{x} \\ \\ {x}^{2} + 1 = 3x \\ \\ {x}^{2} - 3x + 1 = 0 \\ equating \: it \: with \\ a {x}^{2} + bx + c = 0 \\ a = 1 \\ b = - 3 \\ c = 1 \\ \\ x = \frac{ - b \pm \sqrt{ {b}^{2} - 4ac} }{2a} \\ \\ x = \frac{ - ( - 3) \pm \sqrt{ {( - 3)}^{2} - 4 \times 1 \times 1} }{2 \times 1} \\ \\ x = \frac{ 3 \pm \sqrt{ {9 - 4}} }{2} \\ \\ x = \frac{ 3 \pm \sqrt{ {5}} }{2} \\ \\ x = \frac{3}{2} + \frac{ \sqrt{5} }{2} ; \: \: x = \frac{3}{2} - \frac{ \sqrt{5} }{2} [/tex]