Respuesta :

Answer:

[tex]x^3+x^2+x+1=\left(x+1\right)\left(x^2+1\right)[/tex]  

Step-by-step explanation:

Given the expression

[tex]x^3+x^2+x+1[/tex]

Factorized by grouping

[tex]x^3+x^2+x+1=\left(x^3+x^2\right)+\left(x+1\right)[/tex]

Factor out x² from x³+ x²:  x²(x+1)

                        [tex]=\left(x+1\right)+x^2\left(x+1\right)[/tex]

                        [tex]=\left(x+1\right)+x^2\left(x+1\right)[/tex]

Factor common term x+1

                         [tex]=\left(x+1\right)\left(x^2+1\right)[/tex]

Therefore, we conclude that:

[tex]x^3+x^2+x+1=\left(x+1\right)\left(x^2+1\right)[/tex]                  

Otras preguntas