Respuesta :

Answer:

The first 5 terms of the sequence are 2, 4, 8, 16 and 32.

Step-by-step explanation:

Given:

[tex]a_{1}[/tex] = 2

[tex]a_{n}[/tex] = 2[tex]a_{n-1}[/tex]   -----------------(i)

To get the first 5 terms of the sequence, substitute in turn, n = 1, 2, 3, 4, 5 into equation (i).

The first term (when n = 1) has been given as:

[tex]a_{1}[/tex] = 2

The second term (when n = 2) is given as:

[tex]a_{2}[/tex] = 2[tex]a_{2-1}[/tex]

[tex]a_{2}[/tex] = 2[tex]a_{1}[/tex]    (but [tex]a_{1}[/tex] = 2 )

=> [tex]a_{2}[/tex] = 2(2)

=> [tex]a_{2}[/tex] = 4

The third term (when n = 3) is given as:

[tex]a_{3}[/tex] = 2[tex]a_{3-1}[/tex]

[tex]a_{3}[/tex] = 2[tex]a_{2}[/tex]    (but [tex]a_{2}[/tex] = 4 )

=> [tex]a_{3}[/tex] = 2(4)

=> [tex]a_{3}[/tex] = 8

The fourth term (when n = 4) is given as:

[tex]a_{4}[/tex] = 2[tex]a_{4-1}[/tex]

[tex]a_{4}[/tex] = 2[tex]a_{3}[/tex]   (but [tex]a_{3}[/tex] = 8 )

=> [tex]a_{4}[/tex] = 2(8)

=> [tex]a_{4}[/tex] = 16

The fifth term (when n = 5) is given as:

[tex]a_{5}[/tex] = 2[tex]a_{5-1}[/tex]

[tex]a_{5}[/tex] = 2[tex]a_{4}[/tex]   (but [tex]a_{4}[/tex] = 16 )

=> [tex]a_{5}[/tex] = 2(16)

=> [tex]a_{5}[/tex] = 32

Therefore, the first 5 terms of the sequence are 2, 4, 8, 16 and 32.