Answer:
At 6% ; $3400 has higher present value.
At 22% ; $5400 has higher present value
Explanation:
Using the PVA formula:
PVA = C({1 - [1 / (1 + r)^t]} / r )
Where ;
C = cashflow ; r = rate ; t = time
PVA of 3400 for 9 years at 6% = 0.06
PVA = 3400({1 - [1 / (1+ 0.06)^9]} / 0.06)
PVA = 3400([1 -[ 1 / 1.06^9]) / 0.06
PVA = 3400(0.4081015 / 0.06)
PVA = 3400(6.8016922)
PVA = 23125.753
PVA of 5400 for 5 years at 6%
PVA = 5400({1 - [1 / (1+ 0.06)^5]} / 0.06)
PVA = 5400([1 - [ 1 / 1.06^5]) / 0.06
PVA = 5400(0.2527418 / 0.06)
PVA = 5400(4.2123637)
PVA = 22746.764
B.)
PVA of 3400 for 9 years at 22% = 0.22
PVA = 3400({1 - [1 / (1+ 0.22)^9]} / 0.22)
PVA = 3400[1 -[ 1 / 1.22^9]) / 0.22)
PVA = 3400 (0.8329826 / 0.22)
PVA = 3400(3.7862848)
PVA = 12873.368
PVA of 5400 for 5 years at 22% = 0.22
PVA = 5400({1 - [1 / (1+ 0.22)^5]} / 0.22)
PVA = 5400([1 - [ 1 / 1.22^5]) / 0.22
PVA = 5400 (0.6300007 / 0.22)
PVA = 5400 (2.8636397)
PVA = 15463.654