Answer:
[tex]y=-\frac{4}{7} x+\frac{55}{7}[/tex]
Step-by-step explanation:
Change the given equation to slope-intercept to get [tex]y=\frac{7}{4}x-\frac{1}{4}[/tex]. When you multiply the slopes of perpendicular lines, you get -1. -1 divided by [tex]\frac{7}{4}[/tex] is [tex]-\frac{4}{7}[/tex]. The slope of the new line is then [tex]-\frac{4}{7}[/tex]. The perpendicular line passes through (5, 5) so you can have the equation[tex]5=-\frac{4}{7} (5)+b[/tex]. Simplifying gets [tex]b = \frac{55}{7}[/tex] . So now the final equation for the perpendicular line is [tex]y=-\frac{4}{7} x+\frac{55}{7}[/tex]