Respuesta :

Answer:

Options (2) and (3)

Step-by-step explanation:

Let, [tex]\sqrt{-8+8i\sqrt{3}}=(a+bi)[/tex]

[tex](\sqrt{-8+8i\sqrt{3}})^2=(a+bi)^2[/tex]

-8 + 8i√3 = a² + b²i² + 2abi

-8 + 8i√3 = a² - b² + 2abi

By comparing both the sides of the equation,

a² - b² = -8 -------(1)

2ab = 8√3

ab = 4√3 ----------(2)

a = [tex]\frac{4\sqrt{3}}{b}[/tex]

By substituting the value of a in equation (1),

[tex](\frac{4\sqrt{3}}{b})^2-b^2=-8[/tex]

[tex]\frac{48}{b^2}-b^2=-8[/tex]

48 - b⁴ = -8b²

b⁴ - 8b² - 48 = 0

b⁴ - 12b² + 4b² - 48 = 0

b²(b² - 12) + 4(b² - 12) = 0

(b² + 4)(b² - 12) = 0

b² + 4 = 0 ⇒ b = ±√-4

                     b = ± 2i

b² - 12 = 0 ⇒ b = ±2√3

Since, a = [tex]\frac{4\sqrt{3}}{b}[/tex]

For b = ±2i,

a = [tex]\frac{4\sqrt{3}}{\pm2i}[/tex]

  = [tex]\pm\frac{2i\sqrt{3}}{(-1)}[/tex]

  = [tex]\mp 2i\sqrt{3}[/tex]

But a is real therefore, a ≠ ±2i√3.

For b = ±2√3

a = [tex]\frac{4\sqrt{3}}{\pm 2\sqrt{3}}[/tex]

a = ±2

Therefore, (a + bi) = (2 + 2i√3) and (-2 - 2i√3)

Options (2) and (3) are the correct options.

Answer: b and c

Step-by-step explanation: