Respuesta :

Answer:

x = 6 and x = -6

Step-by-step explanation:

[tex] \frac{3 - {x}^{2} }{8 + {x}^{2} } = - \frac{3}{4} [/tex]

i) simplify the equation using cross multiplication

[tex]4(3 - {x}^{2} ) = - 3(8 + x {}^{2} )[/tex]

ii) distribute 4 into (3 - x²)

[tex](4 \times 3) + (4 \times ( - x {}^{2} )) = - 3(8 + {x}^{2} )[/tex]

[tex]12 - 4x {}^{2} = - 3(8 + {x}^{2} )[/tex]

iii) distribute -3 into (8 + x²)

[tex]12 - 4 {x}^{2} = ( - 3 \times 8) + ( - 3 \times {x}^{2} )[/tex]

[tex]12 - 4 {x}^{2} = - 24 - 3 {x}^{2} [/tex]

iv) move -3x² to the left-hand side and change its sign

[tex]12 - 4x {}^{2} + 3 {x}^{2} = - 24[/tex]

v) move 12 to the right-hand side and change its sign

[tex] - 4 {x}^{2} + 3 {x}^{2} = - 24 - 12[/tex]

vi) collect like terms

[tex] - x {}^{2} = - 24 - 12[/tex]

vii) calculate the difference

[tex] - x {}^{2} = - 36[/tex]

viii) change the signs on both sides of the equation

[tex] {x}^{2} = 36[/tex]

ix) take the square root to the opposite side of the equation and remember to use both negative and positive roots

[tex]x = + - \sqrt[]{36} [/tex]

[tex]x = + - 6[/tex]

x) write the solutions one with a '+' sign and the other with a '-' sign

[tex]x = 6[/tex]

[tex]x = - 6[/tex]