3 lines are shown. A line with points T, R, W intersects a line with points S, R, W at point R. Another line extends from point R to point U between angle T, R, V. Angle V R W is (3 x) degrees and angle T R S is (2 x + 18) degrees.
What is m∠SRW?

18
54
126
108

Respuesta :

Answer:

m∠SRW = [tex]126^{o}[/tex]

Step-by-step explanation:

Given: <VRW = 3x

          <TRS = (2x + 18)

What is m∠SRW?

<TRS = <VRW (vertically opposite angles)

2x + 18 = 3x

18 = 3x - 2x

x = 18

<VRW = 3x = 3 x 18 = [tex]54^{o}[/tex]

<TRS = (2x + 18) = 92 x 18 + 18)

           = [tex]54^{o}[/tex]

Also,

<TRV = <SRW (vertically opposite angles)

So that,

<TRU + <URV = <SRW

But,

<TRV + <SRW + <TRS + <VRW = [tex]360^{o}[/tex]

<TRV + <SRW +  [tex]54^{o}[/tex] +  [tex]54^{o}[/tex] = [tex]360^{o}[/tex]

<TRV + <SRW + [tex]108^{o}[/tex] = [tex]360^{o}[/tex]

<TRV + <SRW = [tex]360^{o}[/tex] -  [tex]108^{o}[/tex]

<TRV + <SRW = [tex]252^{o}[/tex]

2 <SRW = [tex]252^{o}[/tex]    (∵ <TRV = <SRW)

<SRW = [tex]\frac{252}{2}[/tex]

           = [tex]126^{o}[/tex]

Therefore,

m<SRW = [tex]126^{o}[/tex]

Answer:

short answer its 126 so C.

Step-by-step explanation:

THIS IS FOR FUTURE PPL ON EDGE 2022!! JUST HAD IT