3 lines are shown. A line with points T, R, W intersects a line with points S, R, W at point R. Another line extends from point R to point U between angle T, R, V. Angle V R W is (3 x) degrees and angle T R S is (2 x + 18) degrees.
What is m∠SRW?

18
54
126
108

Respuesta :

Given:

Consider the three point of second line are S, R, V instead of S, R, W.

A line with points T, R, W intersects a line with points S, R, V at point R. Another line extends from point R to point U between angle T, R, V.

[tex]\angle VRW=(3x)^\circ[/tex]

[tex]\angle TRS=(2x+18)^\circ[/tex]

To find:

The m∠SRW.

Solution:

The figure according to the given information is shown below (not to scale).

From the below figure it is clear that, [tex]\angle VRW[/tex] and [tex]\angle TRS[/tex] are vertically opposite angles. So, their measures are equal.

[tex]3x=2x+18[/tex]

Subtract 2x from both sides.

[tex]3x-2x=18[/tex]

[tex]x=18[/tex]

Using x=18 the measure of angle VRW is

[tex]\angle VRW=(3x)^\circ[/tex]

[tex]\angle VRW=(3\times 18)^\circ[/tex]

[tex]\angle VRW=54^\circ[/tex]

Now,

[tex]\angle VRW+\angle SRW=180^\circ[/tex]       [Linear pair]

[tex]54^\circ+\angle SRW=180^\circ[/tex]

[tex]\angle SRW=180^\circ-54^\circ[/tex]

[tex]\angle SRW=126^\circ[/tex]

Therefore, the correct option is C.

Ver imagen erinna

Answer:

126

Step-by-step explanation:

i just got the right answer