Respuesta :
Given:
Consider the three point of second line are S, R, V instead of S, R, W.
A line with points T, R, W intersects a line with points S, R, V at point R. Another line extends from point R to point U between angle T, R, V.
[tex]\angle VRW=(3x)^\circ[/tex]
[tex]\angle TRS=(2x+18)^\circ[/tex]
To find:
The m∠SRW.
Solution:
The figure according to the given information is shown below (not to scale).
From the below figure it is clear that, [tex]\angle VRW[/tex] and [tex]\angle TRS[/tex] are vertically opposite angles. So, their measures are equal.
[tex]3x=2x+18[/tex]
Subtract 2x from both sides.
[tex]3x-2x=18[/tex]
[tex]x=18[/tex]
Using x=18 the measure of angle VRW is
[tex]\angle VRW=(3x)^\circ[/tex]
[tex]\angle VRW=(3\times 18)^\circ[/tex]
[tex]\angle VRW=54^\circ[/tex]
Now,
[tex]\angle VRW+\angle SRW=180^\circ[/tex] [Linear pair]
[tex]54^\circ+\angle SRW=180^\circ[/tex]
[tex]\angle SRW=180^\circ-54^\circ[/tex]
[tex]\angle SRW=126^\circ[/tex]
Therefore, the correct option is C.
Answer:
126
Step-by-step explanation:
i just got the right answer