Respuesta :

Answer:

16. [tex]x = 80^\circ[/tex]

17. [tex]x = 55, y =70, z = 55[/tex]

18. [tex]x =8, y =3[/tex]

19. [tex]r = 66^\circ[/tex], [tex]t = 73^\circ[/tex]

20. [tex]y = 70^\circ, x = 55^\circ[/tex]

21. [tex]x =56^\circ, y = 62^\circ[/tex]

Step-by-step explanation:

16. Side [tex]AB = AC[/tex]

So, the opposite angles of the triangle will also be equal.

[tex]\angle B =\angle C = 50^\circ[/tex]

Using triangle sum property, angle of all the internal angles of a triangle is equal to [tex]180^\circ[/tex].

[tex]50+50+x = 180\\\Rightarrow x = \bold{80^\circ}[/tex]

17. Two sides are given as equal, [tex]x = z[/tex]

Angles on a straight line are always equal to [tex]180^\circ[/tex].

So,

[tex]x + 125 = 180\\\Rightarrow x = 55[/tex]

[tex]z = 55[/tex]

Using triangle sum property, angle of all the internal angles of a triangle is equal to [tex]180^\circ[/tex].

[tex]55+55+y = 180\\\Rightarrow y = \bold{70^\circ}[/tex]

18. All the angles are given equal to each other, therefore all the sides of the triangle will also be equal to each other.

[tex]4x+7 = 13y =39[/tex]

[tex]13y = 39\\\Rightarrow y = 3[/tex]

[tex]4x +7 = 39\\\Rightarrow 4x = 32\\\Rightarrow x = 8[/tex]

19. Two sides are given equal to each other, therefore angles opposite to them will be equal.

Using the triangle sum property in the left triangle:

[tex]r + 57 + 57 = 180\\\Rightarrow r = 66^\circ[/tex]

Using the property that vertically opposite angles are equal and the triangle sum property in the right triangle.

[tex]t+50+57 = 180 \\\Rightarrow t = 73^\circ[/tex]

20. All the sides are given equal to each other.

So, all the angles will be equal to [tex]60^\circ[/tex].

[tex]y - 10 = 60\\\Rightarrow y = 70^\circ[/tex]

[tex]x+5=60\\\Rightarrow x = 55^\circ[/tex]

21. Angles on a straight line are always equal to [tex]180^\circ[/tex].

Angles opposite to equal sides in a triangle are also equal.

[tex]118 + y = 180\\\Rightarrow y = 62^\circ[/tex]

Using triangle sum property:

[tex]x+2y = 180\\\Rightarrow x = 180 - 124 = \bold{56^\circ}[/tex]