Triangle XYZ, X equals 27 cm, Y equals 79 cm and angle C equals 142Degrees. Find the length of Z, to the nearest centimeter.

Respuesta :

Given:

In triangle XYZ, x = 27 cm, y = 79 cm and [tex]\angle C=142^\circ[/tex].

To find:

The length of z.

Solution:

In triangle XYZ, using the Law of cosine, we get

[tex]z^2=x^2+y^2-2xy\cos Z[/tex]

Putting the given values in the above formula, we get

[tex]z^2=(27)^2+(79)^2-2(27)(79)\cos (142^\circ)[/tex]

[tex]z^2=729+6241-4266(-0.788)[/tex]

[tex]z^2=6970+3361.608[/tex]

[tex]z^2=10331.608[/tex]

Taking square root on both sides.

[tex]z=\pm \sqrt{10331.608}[/tex]

[tex]z=\pm 101.6445178[/tex]

Approx the above value to the nearest number and side length cannot be negative. So,

[tex]z\approx \pm 102\text{ cm}[/tex]

Therefore, the length of z is about 102 cm.

Answer:102

Step-by-step explanation: