Respuesta :

Given:

[tex]3(4^x)=5^(x+1)[/tex]

To find:

The solution of the given equation.

Solution:

We have,

[tex]3(4^x)=5^(x+1)[/tex]

It can be written as

[tex]3((2^2)^x)=5^(x+1)[/tex]

[tex]3((2^{2x})=5^(x+1)[/tex]      [tex][\because (a^m)^n=a^{mn}][/tex]

Taking log on both sides.

[tex]\log [3((2^{2x})]=\log 5^(x+1)[/tex]

[tex]\log 3+ \log ((2^{2x})=\log 5^(x+1)[/tex]        [tex][\because \log (ab)=\log a+\log b][/tex]

[tex]\log 3+ 2x\log 2=(x+1)\log 5[/tex]      [tex][\because \log x^n=n\log x][/tex]

Putting values of logarithms, we get

[tex]0.477+ 2x(0.301)=(x+1)0.699[/tex]      [tex][\because \log 2 =0.301, \log 3=0.477, \log 5=0.699][/tex]

[tex]0.477+ 0.602x=0.699x+0.699[/tex]

[tex]0.602x-0.699x=0.699-0.477[/tex]

[tex]-0.097x=0.222[/tex]

Divide both sides by -0.097.

[tex]x=\dfrac{0.222}{-0.097}[/tex]

[tex]x=-2.288656[/tex]

[tex]x\approx -2.289[/tex]

Therefore, the value of x is -2.289.