Respuesta :
Answer:
f⁻¹(x) = (x + 10)/2
General Formulas and Concepts:
Algebra I
- Equality Properties
- Inverse Functions
Step-by-step explanation:
Step 1: Define
f(x) = 2x - 10
Step 2: Rewrite
- Redefine: y = 2x - 10
- Swap x/y: x = 2y - 10
Step 3: Find Inverse
Solve for the new y.
- Add 10 to both sides: x + 10 = 2y
- Divide 2 on both sides: (x + 10)/2 = y
- Rewrite: y = (x + 10)/2
- Redefine: f⁻¹(x) = (x + 10)/2
Answer:
[tex]let \: the \: {f}^{ - 1}(x) \: be \: m \\ m = \frac{1}{2x - 10} \\ m(2x - 10) = 1 \\ 2x - 10 = \frac{1}{m} \\ x = \frac{1}{2m} + 5 \\ therefore \\ {f}^{ - 1} (x) = \frac{1}{2x} + 5[/tex]