Respuesta :
Answer:
B, D, E
Step-by-step explanation:
[tex]B.\\\left(8\dfrac{4}{5}+3\dfrac{2}{10}\right)+\left(-1\dfrac{1}{5}\right)=8\dfrac{4}{5}+\left(3\dfrac{2}{10}+\left(-1\dfrac{1}{5}\right)\right)=8\dfrac{4}{5}+\left(3\dfrac{2}{10}-1\dfrac{1}{5}\right)[/tex]
[tex]D.\\8\dfrac{4}{5}+3\dfrac{2}{10}-1\dfrac{1}{5}=8\dfrac{4}{5}+\left(3\dfrac{2}{10}-1\dfrac{1}{5}\right)[/tex]
[tex]E.\\-\left(-8\dfrac{4}{5}\right)-\left(-3\dfrac{2}{10}\right)+\left(-1\dfrac{1}{5}\right)=8\dfrac{4}{5}+3\dfrac{2}{10}-1\dfrac{1}{5}=8\dfrac{4}{5}+\left(3\dfrac{2}{10}-1\dfrac{1}{5}\right)[/tex]
Used:
Associative property
[tex](a+b)+c=a+(b+c)=a+b+c[/tex]
and
[tex](-)(-)\to(+)\\(-)(+)\to(-)\\(+)(-)\to(-)[/tex]
Answer: D