Respuesta :

gmany

Answer:

B, D, E

Step-by-step explanation:

[tex]B.\\\left(8\dfrac{4}{5}+3\dfrac{2}{10}\right)+\left(-1\dfrac{1}{5}\right)=8\dfrac{4}{5}+\left(3\dfrac{2}{10}+\left(-1\dfrac{1}{5}\right)\right)=8\dfrac{4}{5}+\left(3\dfrac{2}{10}-1\dfrac{1}{5}\right)[/tex]

[tex]D.\\8\dfrac{4}{5}+3\dfrac{2}{10}-1\dfrac{1}{5}=8\dfrac{4}{5}+\left(3\dfrac{2}{10}-1\dfrac{1}{5}\right)[/tex]

[tex]E.\\-\left(-8\dfrac{4}{5}\right)-\left(-3\dfrac{2}{10}\right)+\left(-1\dfrac{1}{5}\right)=8\dfrac{4}{5}+3\dfrac{2}{10}-1\dfrac{1}{5}=8\dfrac{4}{5}+\left(3\dfrac{2}{10}-1\dfrac{1}{5}\right)[/tex]

Used:

Associative property

[tex](a+b)+c=a+(b+c)=a+b+c[/tex]

and

[tex](-)(-)\to(+)\\(-)(+)\to(-)\\(+)(-)\to(-)[/tex]

Answer: D

Step-by-step explanation: The answer is D. It's pretty straight forward. Compare the two answers and you will see that D is equivalent to that equation.