Respuesta :
The magnitude of k at 65.0∘C : 1912.7 /s
Further explanation
Given
k at 25 °C = 1.35 x 10² /s k1
T₁=25 + 273 = 298 K
T₂=65 + 273 = 338 K
Required
the magnitude of k at 65.0∘C
Solution
Arrhenius Equation :
[tex]\tt ln(\dfrac{k_1}{k_2})=(\dfrac{1}{T_2}-\dfrac{1}{T_1})\dfrac{Ea}{R}[/tex]
R : gas constant= 8.314 J/molK
Input the value :
[tex]\tt ln(\dfrac{1.35\times 10^2}{k_2})=(\dfrac{1}{338}-\dfrac{1}{298})\dfrac{55.5.10^3}{8.314}\\\\ln(\dfrac{135}{k_2})=-2.651\rightarrow \dfrac{135}{k_2}=e^{-2.651}\rightarrow k_2=1912.7[/tex]
The magnitude of k will be "1912.7".
Temperature,
- [tex]T_1 = 25^{\circ} C[/tex] or, [tex]298 \ K[/tex]
- [tex]T_2 = 65^{\circ} C[/tex] or, [tex]338 \ K[/tex]
Rate constant,
- [tex]1.35\times 10^2 \ s^{-1}[/tex]
Gas constant,
- [tex]R = 8.314 \ J/mol[/tex]
By using the Arrhenius equation, we get
→ [tex]ln (\frac{k_1}{k_2} ) = (\frac{1}{T_2} - \frac{1}{T_1} )\frac{Ea}{R}[/tex]
By substituting the values, we get
→ [tex]ln (\frac{1.35\times 10^2}{k_2} ) = (\frac{1}{338} - \frac{1}{298} )\frac{55.5\times 10^3}{8.314}[/tex]
→ [tex]ln (\frac{135}{k_2} ) = -2.651[/tex]
[tex]\frac{135}{k_2} = e^{-2.651}[/tex]
[tex]k_2 = 1912.7[/tex]
Thus the response above is right.
Learn more about magnitude here:
https://brainly.com/question/8964080