Respuesta :

Answer:

-4,-3,-2,-1,0,1

Step-by-step explanation:

First, doublepound and simplify it.

-15<3n

3n<6

Solve:

-5<n

n<2

Compound:

-5<n<2.

So the values are -4,-3,-2,-1,0,1

Hope this helps plz hit the crown :D

Answer:

The values of 'n' such that -15 < 3n ≤ 6 will be:

[tex]-5<n\le \:2[/tex]

[tex]-5<n\le \:2[/tex] can also be represented as: -4, -3, -2, -1, 0, 1, 2

Hence, the values of integer n will be:

  • -4, -3, -2, -1, 0, 1, 2

Thus,

[tex]-15<3n\le \:6\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-5<n\le \:2\:\\ \:\mathrm{Interval\:Notation:}&\:(-5,\:2]\end{bmatrix}[/tex]

The line graph is also attached below.

Step-by-step explanation:

Given the expression

-15 < 3n ≤ 6

Lets us solve the inequality for n

[tex]-15<\:3n\le \:6[/tex]

Divide all parts by n

[tex]\:-\frac{15}{3}<\frac{3n}{3}\le \frac{6}{3}[/tex]

simplify

[tex]-5<n\le \:2[/tex]

Therefore, the values of 'n' such that -15 < 3n ≤ 6 will be:

[tex]-5<n\le \:2[/tex]

[tex]-5<n\le \:2[/tex] can also be represented as: -4, -3, -2, -1, 0, 1, 2

Hence, the values of integer n will be:

  • -4, -3, -2, -1, 0, 1, 2

Thus,

[tex]-15<3n\le \:6\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-5<n\le \:2\:\\ \:\mathrm{Interval\:Notation:}&\:(-5,\:2]\end{bmatrix}[/tex]

The line graph is also attached below.

Ver imagen absor201