Respuesta :

Answer:

The correct options for the solution values are:

  • [tex]x=2\sqrt{2}-5[/tex]
  • [tex]x=-2\sqrt{2}-5[/tex]

Step-by-step explanation:

Given the expression

[tex]x^2+10x+25=8[/tex]

Subtract 25 from both sides

[tex]x^2+10x+25-25=8-25[/tex]

Simplify

[tex]x^2+10x=-17[/tex]

Add 25 or 5² to both sides

[tex]x^2+10x+5^2=8[/tex]

as

[tex]x^2+10x+5^2=\left(x+5\right)^2[/tex]

so the expression becomes

[tex]\left(x+5\right)^2=8[/tex]

[tex]\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=\sqrt{a},\:-\sqrt{a}[/tex]

solve

[tex]x+5=\sqrt{8}[/tex]

Subtract 5 from both sides

[tex]x+5-5=2\sqrt{2}-5[/tex]

[tex]x=2\sqrt{2}-5[/tex]

solve

[tex]x+5=-\sqrt{8}[/tex]

Subtract 5 from both sides

[tex]x+5-5=-2\sqrt{2}-5[/tex]

[tex]x=-2\sqrt{2}-5[/tex]

Therefore, the solution to the equation

[tex]x=2\sqrt{2}-5,\:x=-2\sqrt{2}-5[/tex]

Hence, the correct options for the solution values are:

  • [tex]x=2\sqrt{2}-5[/tex]
  • [tex]x=-2\sqrt{2}-5[/tex]