Respuesta :
Answer:
we conclude that:
- The value of missing x = 6
- The value of missing y = 21
Step-by-step explanation:
Given that the table represents a linear function, so the function is a straight line.
Taking two points
- (-12, 17)
- (-10, 19)
Finding the slope between (-12, 17) and (-10, 19)
[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]\left(x_1,\:y_1\right)=\left(-12,\:17\right),\:\left(x_2,\:y_2\right)=\left(-10,\:19\right)[/tex]
[tex]m=\frac{19-17}{-10-\left(-12\right)}[/tex]
[tex]m=1[/tex]
Using the point-slope form to determine the linear equation
[tex]y-y_1=m\left(x-x_1\right)[/tex]
where m is the slope of the line and (x₁, y₁) is the point
substituting the values m = 1 and the point (-12, 17)
[tex]y-y_1=m\left(x-x_1\right)[/tex]
[tex]y - 17 = 1 (x - (-12)[/tex]
[tex]y - 17 = x+12[/tex]
[tex]y = x + 12+17[/tex]
[tex]y = x+29[/tex]
Thus, the equation of the linear equation is:
[tex]y = x+29[/tex]
Now substituting x = -8 in the equation
[tex]y = x+29[/tex]
[tex]y = -8+29[/tex]
[tex]y = 21[/tex]
Thus, the value of missing y = 21 when x = -8
Now substituting y = 23 in the equation
[tex]y = x+29[/tex]
[tex]23 = x+29[/tex]
[tex]x = 29 - 23[/tex]
[tex]x = 6[/tex]
Therefore, the value of missing x = 6 when y = 23
Hence, we conclude that:
- The value of missing x = 6
- The value of missing y = 21