triangles abc, dbe, and fbg are all symmetric about the y-axis. what are the coordinates of the centroid?
please help

triangles abc dbe and fbg are all symmetric about the yaxis what are the coordinates of the centroid please help class=

Respuesta :

Answer:

The coordinates of the centroid are (0, 5)

Step-by-step explanation:

The coordinates of the centroid of a triangle whose vertices (x1, y1), (x2, y2), and (x3, y3) are ([tex]\frac{x1+x2+x3}{3}[/tex] , [tex]\frac{y1+y2+y3}{3}[/tex])

In Δ ABC

∵ A = (-20, 0), B = (0, 15), C = (20, 0)

∴ x1 = -20, x2 = 0, x3 = 20

∴ y1 = 0, y2 = 15, y3 = 0

∴ The centroid = ([tex]\frac{-20+0+20}{3}[/tex] , [tex]\frac{0+15+0}{3}[/tex]) = ([tex]\frac{0}{3}[/tex] , [tex]\frac{15}{3}[/tex]) = (0, 5)

The coordinates of the centroid of Δ ABC are (0, 5)

In Δ DBE

∵ D = (-15, 0), B = (0, 15), E = (15, 0)

∴ x1 = -15, x2 = 0, x3 = 15

∴ y1 = 0, y2 = 15, y3 = 0

∴ The centroid = ([tex]\frac{-15+0+15}{3}[/tex] , [tex]\frac{0+15+0}{3}[/tex]) = ([tex]\frac{0}{3}[/tex] , [tex]\frac{15}{3}[/tex]) = (0, 5)

The coordinates of the centroid of Δ DBE are (0, 5)

In Δ FBG

∵ F = (-5, 0), B = (0, 15), G = (5, 0)

∴ x1 = -5, x2 = 0, x3 = 5

∴ y1 = 0, y2 = 15, y3 = 0

∴ The centroid = ([tex]\frac{-5+0+5}{3}[/tex] , [tex]\frac{0+15+0}{3}[/tex]) = ([tex]\frac{0}{3}[/tex] , [tex]\frac{15}{3}[/tex]) = (0, 5)

The coordinates of the centroid of Δ FBG are (0, 5)

∵ The three triangles are symmetric about the y-axis

→ That means they have the same centroid and it lies on the y-axis

The coordinates of the centroid are (0, 5)