Answer:
After factoring we get:
[tex](\mathbf{2}q^2r+\mathbf{3}s^2t)(\mathbf{4}q^4r^2-\mathbf{6}q^2rs^2t+\mathbf{9}s^4t^2)[/tex]
Step-by-step explanation:
The expression given is:
[tex]8q^6r^3+27s^6t^3[/tex]
We need to factor the expression using the formula:
[tex]a^3+b^3=(a+b)(a^2-ab+b^2)[/tex]
Given the expression:
we have
[tex]a = 2q^2r\\b= 3s^2t[/tex]
Now applying the formula:[tex]a^3+b^3=(a+b)(a^2-ab+b^2)[/tex]
[tex](2q^2r)^3+(3s^2t)^3\\=(2q^2r+3s^2t)((2q^2r)^2-(2q^2r)(3s^2t)+(3s^2t)^2)\\=(2q^2r+3s^2t)(4q^4r^2-6q^2rs^2t+9s^4t^2)[/tex]
So, after factoring we get:
[tex](\mathbf{2}q^2r+\mathbf{3}s^2t)(\mathbf{4}q^4r^2-\mathbf{6}q^2rs^2t+\mathbf{9}s^4t^2)[/tex]