Answer:
1)Solving the expression [tex]1-2(2x+1)=1-(x-1)[/tex] we get [tex]\mathbf{x=-\frac{1}{3}}[/tex]
2) solving the equation [tex]3.6x-6.1=5.9-2.4x[/tex] we get [tex]\mathbf{x=2}[/tex]
Step-by-step explanation:
We need to solve the expressions:
1) [tex]1-2(2x+1)=1-(x-1)\\[/tex]
Solving
[tex]1-2(2x+1)=1-(x-1)[/tex]
First solving the brackets
[tex]1-4x-2=1-x+1[/tex]
Simplifying
[tex]-1-4x=-x[/tex]
Adding 4x on both sides
[tex]-1-4x+4x=-x+4x\\-1=3x[/tex]
Switching the sides
[tex]3x=-1[/tex]
Divide both sides by 3
[tex]\frac{3x}{3}=-\frac{1}{3}\\x= -\frac{1}{3}[/tex]
So, Solving the expression [tex]1-2(2x+1)=1-(x-1)[/tex] we get [tex]\mathbf{x=-\frac{1}{3}}[/tex]
2) [tex]3.6x-6.1=5.9-2.4x[/tex]
Solving:
[tex]3.6x-6.1=5.9-2.4x[/tex]
Adding 6.1 on both sides
[tex]3.6x-6.1+6.1=5.9-2.4x+6.1\\3.6x=12-2.4x[/tex]
Adding 2.4x on both sides
[tex]3.6x+2.4x=12-2.4x+2.4x\\6x=12\\[/tex]
Divide both sides by 6
[tex]\frac{6x}{6}=\frac{12}{6}\\x=2[/tex]
So, solving the equation [tex]3.6x-6.1=5.9-2.4x[/tex] we get [tex]\mathbf{x=2}[/tex]