Answer:
Answer image is attached.
Step-by-step explanation:
Given rational expressions:
[tex]1.\ \dfrac{x^2+x+4}{x-2}\\2.\ \dfrac{x^2-x+4}{x-2}\\3.\ \dfrac{x^2-4x+10}{x-2}\\4.\ \dfrac{x^2-5x+16}{x-2}[/tex]
And the rewritten forms:
[tex](x-2)+\dfrac{6}{x-2}\\(x+3)+\dfrac{10}{x-2}\\(x+1)+\dfrac{6}{x-2}\\(x-3)+\dfrac{10}{x-2}[/tex]
We have to match the rewritten terms with the given expressions.
Let us consider the rewritten terms and let us solve them one by one by taking LCM.
[tex](x-2)+\dfrac{6}{x-2}\\\Rightarrow \dfrac{(x-2)^{2}+6 }{x-2}\\\Rightarrow \dfrac{x^2-4x+4+6 }{x-2}\\\Rightarrow \dfrac{x^2-4x+10}{x-2}[/tex]
So, correct option is 3.
[tex](x+3)+\dfrac{10}{x-2}\\\Rightarrow \dfrac{(x+3)(x-2)+10}{x-2}\\\Rightarrow \dfrac{(x^2+3x-2x-6)+10}{x-2}\\\Rightarrow \dfrac{x^2+x+4}{x-2}[/tex]
So, correct option is 1.
[tex](x+1)+\dfrac{6}{x-2}\\\Rightarrow \dfrac{(x+1)(x-2)+6}{x-2}\\\Rightarrow \dfrac{x^{2} +x-2x-2+6}{x-2}\\\Rightarrow \dfrac{x^{2} -x+4}{x-2}[/tex]
So, correct option is 2.
[tex](x-3)+\dfrac{10}{x-2}\\\Rightarrow \dfrac{(x-3)(x-2)+10}{x-2}\\\Rightarrow \dfrac{x^2-3x-2x+6+10}{x-2}\\\Rightarrow \dfrac{x^2-5x+16}{x-2}[/tex]
So, correct option is 4.
The answer is also attached in the answer area.