Answer:
15 possible combinations
Step-by-step explanation:
Given
[tex]Vegetables = 6[/tex]
[tex]Selection = 2[/tex]
Required
Determine the possible number of combinations
The question emphasizes on "selection" which means "combination".
So; To answer this question, we apply the following combination formula:
[tex]^nC_r = \frac{n!}{(n-r)r!}[/tex]
In this case:
[tex]n = 6[/tex]
[tex]r = 2[/tex]
The formula becomes:
[tex]^6C_2 = \frac{6!}{(6-2)!2!}[/tex]
[tex]^6C_2 = \frac{6!}{4!2!}[/tex]
[tex]^6C_2 = \frac{6*5*4!}{4!2*1}[/tex]
[tex]^6C_2 = \frac{6*5}{2}[/tex]
[tex]^6C_2 = \frac{30}{2}[/tex]
[tex]^6C_2 = 15[/tex]
Hence, there are 15 possible combinations