Respuesta :

Answer:

Maximum value of z = 21

Minimum value of z = -9

Step-by-step explanation:

We have to maximize/minimize the given equation for the given constraints as,

x ≥ -1

y ≤ -2x + 3

y ≥ -1

By using the graphing tool,

Corner points for the feasible region are,

A(-1, 5), B(-1, -1) and C(2, -1)

For A(-1, 5),

z = 4x + 5y = 4(-1) + 5(5)

                  = -4 + 25

                  = 21

For B(-1, -1),

z = 4(-1) + 5(-1)

  = -4 - 5

  = -9

For C(2, -1),

z = 4(2) + 5(-1)

  = 8 - 5

  = 3

Maximum value of z = 21

Minimum value of z = -9

Ver imagen eudora