Answer:
(f + g)(x) = x² + 4x - 4 ⇒ B
Step-by-step explanation:
Let us solve the question
∵ f(x) = 4x + 4
∵ g(x) = x² - 6
→ We need to find (f + g)(x) which means f(x) + g(x)
∴ (f + g)(x) = f(x) + g(x)
∵ f(x) + g(x) = (4x + 2) + (x² - 6)
∴ f(x) + g(x) = 4x + 2 + x² - 6
→ Add the like terms
∵ f(x) + g(x) = 4x + x² + (2 - 6)
∴ f(x) + g(x) = 4x + x² + (-4)
→ Remember (+)(-) = (-)
∴ f(x) + g(x) = 4x + x² - 4
→ Arrange the terms from greatest power of x
∴ f(x) + g(x) = x² + 4x - 4
∴ (f + g)(x) = x² + 4x - 4