Answer:
[tex]P = -\frac{17978}{1609344}(h)+101.325[/tex]
Explanation:
Given
[tex]h = height[/tex]
[tex]P = Pressure[/tex]
[tex](h_1,P_1) = (0,101.325)[/tex]
[tex](h_2,P_2) = (1609.344 ,83.437 )[/tex]
Required
Determine the linear equation for P in terms of h
First, we calculate the slope/rate (m);
The following formula is used:
[tex]m = \frac{P_2 - P_1}{h_2 - h_1}[/tex]
Substitute values for P's and h's
[tex]m = \frac{83.347 - 101.325}{1609.344- 0}[/tex]
[tex]m = \frac{-17.978}{1609.344}[/tex]
[tex]m = -\frac{17.978}{1609.344}[/tex]
Multiply by 1000/1000
[tex]m = -\frac{17.978 * 1000}{1609.344*1000}[/tex]
[tex]m = -\frac{17978}{1609344}[/tex]
The equation is then calculated using:
[tex]P - P_1 = m(h - h_1)[/tex]
Substitute values for m, h1 and P1
[tex]P - P_1 = m(h - h_1)[/tex]
[tex]P - 101.325 = -\frac{17978}{1609344}(h - 0)[/tex]
[tex]P - 101.325 = -\frac{17978}{1609344}(h)[/tex]
Make P the subject
[tex]P = -\frac{17978}{1609344}(h)+101.325[/tex]
The above is the required linear equation